對稱美被認為是最美的的方式,中國很多的建筑都是軸對稱的,像故宮,圓明園之類的古代建筑都是對稱的。小編今天給大家推薦的就是對稱的花邊,大家可以把它畫在手抄報上面,正好四個花可以畫在手抄報的四個角上。下面我們就一起來欣賞下手抄報花邊簡單又好看。
在日常生活中和在藝術作品中,“對稱”有更多的含義,常代表著某種平衡、比例和諧之意,而這又與優美、莊重聯系在一起。外爾的書首先用一章講鏡像對稱,涉及手性諸問題,有十分豐富的內容。大家也許還記得,2001年諾貝爾化學獎獎勵的課題主要是“手性分子催化”問題。如今,手性藥物在藥品市場占有相當的份額,有機分子手性對稱性已經是相當實用和熱門的話題。這里面仍然遺留下許多基本的問題沒有解答,比如生命基本物質中的氨基酸、核酸的高度一致性的手性(即手性對稱破缺)是如何起源的?植物莖蔓的手性纏繞是由什么決定的?同種植物是否可能具有不同的手性?
左右對稱在建筑藝術中有大量應用,但是人們也注意到完全的左右對稱也許顯得太死板,建筑設計者常用某種巧妙的辦法打破嚴格的左右對稱,如通過園林綠化或者通過立面前的雕塑或者廣場非對稱布局,有意打破嚴格的對稱。通常,嚴格左右對稱的建筑,都盡可能放在了具有非對稱的周圍環境之中。 公眾可能較感興趣的是作者對摩爾文化、埃及和中國實際裝飾藝術品中對稱性的分析。在二維裝飾圖案中,總共有17種本質上不同的對稱性。
作者說,在古代的裝飾圖案中,尤其是古埃及的裝飾物中,能夠找到所有17種對稱性圖案。到了19世紀,有了變換群的概念以后,人們才從理論上搞明白只有17種可能性(波利亞的證明),而古人確實窮盡了所有這些可能。外爾有一句話特別值得注意:“雖然阿拉伯人對數字5進行了長期的摸索,但是他們當然不能在任何一個有雙重無限關聯的裝飾設計中,真正嵌入一個五重中心對稱的圖案。然而,他們嘗試了各種容易讓人上當的折衷方案。我們可以這樣說,他們通過實踐證明了在飾物中使用五邊形是不可能的。”這一論述非常關鍵,阿拉伯裝飾藝術的確時常費力地嘗試使用五次旋轉對稱。連續裝飾圖案中嵌入五次對稱圖元的麻煩之處在于,五次對稱要涉及黃金分割,安排下一個五邊形,則周圍需要作復雜的調整,這要比安排三角形、四邊形和六邊形的情況復雜得多。
《對稱》還用相當篇幅講晶體點陣的對稱性,我當年學過結晶學和礦物學,知道這是相當復雜的事情,現依稀記得32種單形和230種空間群的數字,具體內容已經想不清楚了。外爾的處理當然并非想具體展示各種可能的晶格對稱性,書中討論得相當簡略,這也給普通諸者閱讀造成了困難。要想真正搞明白230種空間群,還真要讀地質學的圖書《結晶學與礦物學》。