《三角形內角和》教學設計(通用6篇)
《三角形內角和》教學設計 篇1
設計思路遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。學生對三角尺上每個角的度數比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內角的和是180°,引發學生的猜想:其它三角形的內角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發現:各類三角形的三個內角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動潛移默化地向學生滲透了“轉化”數學思想,為后繼學習奠定了必要的基礎。最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數學信息的出現從比較顯現到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水平發展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內角的度數,說出另外一個內角。有唯一的答案。訓練多次后,只給出三角形一個內角,說出其它兩個內角,答案不唯一,可以得出無數個答案。讓學生在游戲中消除疲倦激發興趣,拓展學生思維。兼顧到智力水平發展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創設問題情境,讓學生去實驗、去發現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發展空間觀念和推理能力。教學目標1.讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。2.讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。3.使學生體驗成功的喜悅,激發學生主動學習數學的興趣。 教材分析三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180°。教學重點讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。教學準備多媒體課件、學具。教學過程一、激趣引入(一)認識三角形內角師:我們已經認識了什么是三角形,誰能說出三角形有什么特點?生1:三角形是由三條線段圍成的圖形。生2:三角形有三個角,……師:請看屏幕(課件演示三條線段圍成三角形的過程)。師:三條線段圍成三角形后,在三角形內形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。(這里,有必要向學生直觀介紹“內角”。)(二)設疑,激發學生探究新知的心理師:請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)生:能。師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)師:有誰畫出來啦?生1:不能畫。生2:只能畫兩個直角。生3:只能畫長方形。師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。師:問題出現在哪兒呢?這一定有什么奧秘?想不想知道?生:想。師:那就讓我們一起來研究吧!(揭示矛盾,巧妙引入新知的探究)二、動手操作,探究新知(一)研究特殊三角形的內角和師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數。(課件閃動其中的一塊三角板)生:90°、60°、30°。(課件演示:由三角板抽象出三角形)師:也就是這個三角形各角的度數。它們的和怎樣?生:是180°。師:你是怎樣知道的?生:90°+60°+30°=180°。師:對,把三角形三個內角的度數合起來就叫三角形的內角和。師:(課件演示另一塊三角板的各角的度數。)這個呢?它的內角和是多少度呢?生:90°+45°+45°=180°。師:從剛才兩個三角形內角和的計算中,你發現什么?生1:這兩個三角形的內角和都是180°。生2:這兩個三角形都是直角三角形,并且是特殊的三角形。(二)研究一般三角形內角和1.猜一猜。師:猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。生1:180°。生2:不一定。……2.操作、驗證一般三角形內角和是180°。(1)小組合作、進行探究。師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?生:可以先量出每個內角的度數,再加起來。師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)(2)小組匯報結果。師:請各小組匯報探究結果。生1:180°。生2:175°。生3:182°。……(三)繼續探究師:沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?生1:有。生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。師:怎樣才能把三個內角放在一起呢?生:把它們剪下來放在一起。1.用拼合的方法驗證。師:很好,請用不同的三角形來驗證。師:小組內完成,仍然先分工怎樣才能很快完成任務,開始吧。2.匯報驗證結果。師:先驗證銳角三角形,我們得出什么結論?生1:銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。生2:直角三角形的內角和也是180°。生3:鈍角三角形的內角和還是180°。3.課件演示驗證結果。師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)師:我們可以得出一個怎樣的結論?生:三角形的內角和是180°。(教師板書:三角形的內角和是180°學生齊讀一遍。)師:為什么用測量計算的方法不能得到統一的結果呢?生1:量的不準。生2:有的量角器有誤差。師:對,這就是測量的誤差。三、解決疑問。師:現在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)生:因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。師:在一個三角形中,有沒有可能有兩個鈍角呢? 生:不可能。師:為什么?生:因為兩個銳角和已經超過了180°。師:那有沒有可能有兩個銳角呢?生:有,在一個三角形中最少有兩個內角是銳角。四、應用三角形的內角和解決問題。1. 看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯) 2. 按要求計算。(數學信息較為隱藏和生活中的實際問題) 3.游戲鞏固。在四人小組中完成:由一個同學出題,其它三個同學回答。(1)給出三角形兩個內角,說出另外一個內角(有唯一的答案)。(2)給出三角形一個內角,說出其它兩個內角(答案不唯一,可以得出無數個答案)。五、全課總結。今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣? 教學反思這篇教學設計通過施教,符合新課程理念,轉變學生的學習方式,能讓學生以小組合作的形式進行問題的探索與研究,學生在整節課中學得輕松。整節課的教學設計,條理清晰,層次清楚,學生思維活躍,教學一開始從學生熟悉的三角板抽象出特殊的三角形探討三角形的內角和是180°,接下來很自然地引導學生探討所有的三角形的內角和是不是也是180,過渡自然且有吸引力。在學習活動的過程中,先讓學生進行測量、計算,但得不到統一的結果,再引導學生用把三個角拼在一起得到一個平角進行驗證。這時,有部分學生在拼湊的過程中出現了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。練習設計也具有許多優點,注意到練習的梯度,并由淺入深,照顧到不同層次學生的需求,也很有趣味性。但還受課本資源的限制,不能大膽突破教材,充分利用生活資源。例如:可以出示一塊被打爛了的三角形玻璃板(如圖:),向學生提出挑戰性的問題:老師今天不小心把這塊三角形的玻璃板打爛了,要重新買與原來同樣大的一塊,可老師不知道尺寸,怎么辦呢?誰能幫老師解決這個問題呢?讓學生利用學過的知識解決生活中常出現的問題,更能使學生體會到數學不僅來源于生活,學習數學的目的更是為了解決生活中的問題,體會到學習數學的重要意義。
《三角形內角和》教學設計 篇2
【教材內容】
北京市義務教育課程改革實驗教材(北京版)第九冊數學
【教材分析】
《三角形內角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學生已經掌握了三角形的穩定性和三角形的三邊關系相關知識后對三角形的進一步研究,探索三角形的內角和等于180°。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°。讓學生在自主探索中發現三角形的又一特性,更加深入的培養了學生的空間觀念。
【學生分析】
在四年級學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。
【教學目標】
1、通過量、拼、折、剪等方法探索和發現三角形的內角和等于180°掌握并會應用這一規律解決實際的問題。
2、通過討論、爭辯、操作、推理發展學生動手操作、觀察比較和抽象概括的能力。
3、使學生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。
【教學重點】讓學生經歷“三角形內角和是180度”這一知識的形成發展和應用的全過程。
【教學難點】能利用學到的知識進行合情的推理。
【教具學具準備】課件、各種各樣的直角三角形、長方形、剪刀、量角器、數學紙
【教學過程】
一、學具三角板,引入新課
1、(出示兩個直角三角板),問:這是咱們同學非常熟悉的一種學習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)
2、顧名思義一個三角形都有幾個角呀?(三個)
3、認識內角
(1)在三角形的內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書:三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?
(2)這個三角形內有幾個內角?(三個)這個呢?(三個)
(設計意圖:由學生最熟悉的三角板引入新課,激發學生興趣的同時為后面的學習做準備)
二、動手操作,探索新知
(一)直角三角形內角和
ⅰ、特殊直角三角形內角和
1、根據我們以往對三角板的了解,你還記得每個三角形上每個內角各是多少度嗎?(生說度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。
2、觀察這兩個三角形的度數,你有什么發現?
生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)
生2:我還發現他們內角加起來是180度。師:他真會觀察,你發現了嗎?快算一算是不是他說的那樣?
(課件):(1)90°+60°+30°=180°)
那么另一個三角板的三個內角的總度數是多少?
(生回答,師課件:(2)90°+45°+45°=180)
3、你指的哪是180度?(生:這三個內角合起來是180度)
4、在三角形內三個內角的總度數又簡稱為三角形的內角和。(板書:和)
5、這個直角三角形的內角和是多少度?另一個呢?
6、你還記得180度是我們學過的是什么角嗎?(平角)趕快在你的數學紙上畫一個平角。
(師出示一個平角)問:平角是什么樣的?
7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內角和就組成這樣的一個角呀。
ⅱ、一般直角三角形內角和
1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。
2、剛才的那兩個直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學具,你能充分地利用這些學具,想辦法來研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。
(1)小組活動(2)匯報
哪個組愿意把你們的研究成果向大家展示? 每個小組派代表發言。(在實物展臺上演示)
三角形的種類
驗證方法
驗證結果
*“量一量”的方法:
板書:有一點誤差的度數
*“剪一剪”的方法:
我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)
現在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)
你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?
還有其他方法嗎?
*“折一折”的方法:
預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?
學生演示(課件:折的過程)
②學生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內角拼成平角。(板書:折)
*推理:
你們有用長方形來研究直角三角形內角和度數的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)
這種方法就叫做推理,一般到中學以后我們經常會用到。(板書:推理)
3、小結
(1)通過我們剛才的研究,我們發現直角三角形的內角和都是多少度呀?(板書:內角和是180°)剛才我們在測量的時候為什么會出現179度183度呢?看來只要是測量不可避免的會產生誤差。
(2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)
(設計意圖:引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。)
(二)、銳角三角形、鈍角三角形的內角和
1、請你們任意畫一個鈍角三角形,一個銳角三角形
2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學到的知識來研究你所畫的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學生操作,匯報,課件演示)我們是用什么方法來研究的?
3、學生模仿老師操作說理
4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的內角和呢?我們就可以說所有三角形的內角和都是180度。
師:這也是三角形的一個特性,現在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內角和是180°)。
(設計意圖:引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。)
三、鞏固新知,拓展應用
我們就用三角形的這一特性來解決一些問題
1、兩個三角形拼成大三角形
(1)每個三角形的內角和都是少度?
(2)(課件把兩個三角形拼在一起)它的內角和是多少度?(這時學生答案又出現了180°和360°兩種。)師:究竟誰對呢
2、一個三角形去掉一部分
(1)這是一個三角形,他的內角和是多少度?我從中剪去一個三角形他的內角和是多少度?
再剪去一個三角形呢?(課件演示)
你們看這兩個三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來三角形的內角和的度數和他的大小形狀都無關。
(2)我再把這個三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)
你能利用我們三角形的內角和是180度來研究這個四邊形的內角和是多少度嗎?
(3)如果五邊形,你還能求出他的度數嗎?
(設計意圖:充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。)
四、總結評價、延伸知識
通過這節課的學習研究你掌握了哪些知識?我們是怎樣研究的呢?
師:先研究的是特殊直角三角形的內角和是180度,接著通過量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內角和是180度。
(設計意圖:幫助學生梳理本節課的知識脈絡.)
《三角形內角和》教學設計 篇3
二學期幾何里一個重要的知識點——三角形內角和,是在學生認識了三角形的特點和分類的基礎上這一節課進一步對三角形內角之間的關系的學習和探究。本課設計的出發點在于運用先進的多媒體手段讓學生直觀感知三角形內角和的特點。
這節課上完之后,我在課后進行了小結,也聽取了經驗豐富的教師的分析,收獲很大,授課過程中有講得好的環節也有處理得不好的環節,下面從幾個方面小結:
1. 在本次授課中,引入是比較恰當的。我是從學生原有的對圖形的認識的感性知識進行引入的,先出示一個長方形,讓學生說出它的內角和是多少度,學生用之前學過的知識都知道,長方形有四個直角,那么加起來就是360°,然后又用正方形,由于正方形和長方形有一個同樣的特征,所以學生也很容易就能回答出來它的內角和是多少。再將正方形沿著對邊剪開,分成兩個三角形,這個時候問學生:你們能猜出三角形的內角和是多少嗎?這樣的引入和從舊知到新知的過渡,非常地自然,學生也較容易進行猜想。
2. 利用多媒體手段讓學生直觀感知三角形內角和的特點。用動畫演示撕角拼一拼,折角,讓學生可以非常直觀地認識三角形內角和的特點,印象非常深刻,也給學生在進行動手操作時以正確的指引。
3. 小組合作,自主探究。整一節課都很注重學生自主探究,動手實驗的過程,我只是一個主導者,組織好課堂教學,放手讓學生去實驗、討論、歸納,沒有像之前上課那樣由本人我講完整節課而學生只是聽。
4. 在學生進行猜想之后,讓學生開始動手實驗,測量三角形的三個內角的度數并填表,這個環節在處理的時候不是很得當,因為量角在學生來說,本來就是一個難點,沒有很好的掌握量角的技巧導致沒能準確地量角,而且在本節課中,要進行量角實驗的三角形個數較多,學生不能很好地進行小組分工,所以在這個地方花費了不少的時間,而結果量出來的度數也不是很精確,雖說在測量中允許有誤差,但是這與一開始的教學設計出發點有出入,達不到很好驗證猜想的效果。
一節課下來,總的感覺還可以,學生能夠掌握本節課的重點和難點,達到預期中的教學效果,但是課堂中的教學常規還不是很規范,雖然使用了多媒體課件進行輔助教學,但是卻忽略了傳統教學中的優勢,不能很好地將兩者結合起來運用,這是今后教學中必須引起重視的地方。
《三角形內角和》教學設計 篇4
學習興趣是學生學習的內部動機,是推動學生探求內部真理與獲取能力的一種強烈欲望,它在學習活動中起著十分重要的作用。教學實踐表明,學生如果對數學知識充滿好奇心,對學會知識有自信心,那么他們總是主動積極、心情愉快的進行學習。因此,在數學課堂教學中,我們要時刻注意發掘教材孕伏的智力因素,審時度勢,把握時機,因勢利導地為學生創造良好的教學情境 ,激發學生的興趣,讓學生在學習數學中愉快地探索。下面本人結合蘇教版第七冊《三角形內角和》一課,談幾點體會。
一、開講生趣
俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學內容和學生實際,精心設計每一節課的開頭導語,用別出心裁的導語來激發學生的學習興趣,讓學生主動地投入學習。如“三角形內角和”的引入部分,我先要求學生拿出自己預先準備的三個不同的三角形(直角、銳角和鈍角三角形),各自用量角器量出每個三角形中三個角的度數,然后分別請幾個學生報出不同三角形的兩個角的度數,我當即說出第三個角的度數。一開始,有幾位同學還不服氣,認為可能是巧合,又舉例說了幾個,都被我一一猜對了,這時學生都感到驚奇,教師的答案怎么和他們量出的答案會一致的。“探個究竟”的興趣因此油然而生。
二、授中激趣
開講生趣僅作為導入新課的“引子”,那成功之路,至多只行了一半。還需要在講授新課中適時地激發學生的興趣,恰到好處地誘導,充分挖掘知識的內在魅力,以好奇心為先導,引發學生強烈的求知欲。比如上例新授部分,在板書課題后,接著又讓全班學生動手做一個實驗:分別把各自手里的三個三角形(銳角、鈍角、直角三角形)的三個角剪下,再分別把每個三角形的三個角拼在一起,并言之有趣地激勵學生:看誰最先發現其中的“奧秘”;看誰能爭取到向大家作“實驗成功的報告”。這時,學生心中激起了層層思考的漣漪,課堂氣氛既緊張又活躍,發言爭先恐后。還有的學生通過把正方形的紙沿對角線對折,變成兩個完全一樣的三角形,因為正方形有4個直角,是360 °,所以每個三角形的內角和是180°好方法。顯然,此時不但學生對三角形內角和是180°的性質有了感性的基礎,而且教師對這一性質的講解也已到了“心有靈犀一點通”的最佳時刻。
三、設疑引趣
學起于思,思源于疑。“疑”是學生學習數學知識中啟動思維的起點。在數學教學中,作為教師要善于提出具有引發學生思考的問題,使學生見疑生趣,產生有趣解疑的求知欲和求成心。
比如“三角形內角和”在新授結束后
師:(出示一個大三角形)它的內角和是多少度?
生:180 °。
師:(出示一個很小的三角形 )它的內角和是多少度?
生:180 °。
師:把大三角形平均分成兩份。它的(指均分后的一個小三角形)內角和是多少度?(生有的答90 °,有的180 °。)
師:哪個對?為什么?
生:180°,因為它還是一個三角形。
師:每個小三角形的度數是180°,那么這樣的兩個小三角形拼成一個大三角形,內角和是多少度?
這時學生的答案又出現了180°和360°兩種。
師:究竟誰對呢?
學生個個臉上露出疑問,經過一翻激烈的討論探究后,學生開始舉手回答。
生1:180 °,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內角和總是180 °。
生2 :我發現兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內角和還是180°,不是360°。
師:表揚:你真聰明。演示 :
這里教師通過提出兩個具有思考性的問題,層層設疑,使學生探究知識的興趣波瀾起伏,時刻處在緊張而又興奮的學習狀態中。
四、練中有趣
練習是鞏固所學知識,形成技能技巧的必要途徑,是教學的一個重要環境。但也往往被呆板的練習形式、乏味的練習內容,把在學習新知識中激發出來的學習興趣,而無情淹沒,使學生愉快的心情、振奮的精神受到嚴重的扼殺和抑制。因此課堂練習要設計得精彩有趣,教學中教師根據所學內容,設計不同形式的練習。
1、練習形式要注意層次性。
設計不同類型、不同層次的練習題,從模仿性的基礎練習到提示的變式練習再到拓展性的思考練習,降低習題的坡度,照顧不同層次的學生,使學生始終保持高昂的學習熱情。比如“三角形內角和”中在運用規律解題時, 先已知兩角求第三角;再已知直角三角形的一銳角求另一角,感知直角三角形的兩銳角之和是90°;最后已知三角形的一角,且另兩角相等,求另兩角的度數,或已知三角形三個角的度數均相等,求三角形的三個角的度數。以上設計,通過有層次的練習,不斷掀起學生認知活動的高潮,學生學起來饒有興趣,沒有枯燥乏味之感。
2、練習形式要注意科學性和趣味性。
布魯納說過:“學習的最好刺激,是對所學材料的興趣。”教學時可適當選編一些學生喜聞樂見的、有點情節又貼進學生生活經驗以及日常生活中應用較廣泛的題目,通過少量的趣題和多種形式的題目,使學生變知之為樂知。比如,本課在完成基本題后,讓學生在自己的本子上畫出一個三角形,要求其中兩個內角都是直角。在學生畫來畫去都無從下手時,個個手抓腦袋,冥思苦想。這時教師說出“畫不出來”的理由,學生們恍然大悟。
五、課尾留趣
一節課的前半節,是學生接受知識的最佳時刻,但一到后半節,學生注意力容易分散,這時設計一些有趣的數學活動、游戲,不僅可以使大腦得到適當休息,又能吸引學生的注意力,達到“課業結束趣猶在”的效果。
在本課結束時,我設計了一道搶答題。
揭示:把左圖截去一部分,(每次只截一次)要使剩下圖形的內角和是180°,有幾種截法?”
學生原以為截法只有幾種,到后來知道截法可以有無數種,感到是“一大發現”。但更使他們感到“一大發現”的是盡管截法有無數種,但剩下的圖形的種類只有一種,因為內角和是180°的圖形只能是三角形。這樣練習,使學生在探索中不斷體驗到成功的樂趣和喜悅。
六、“評”中增趣
這里的“評”是指教師對學生答問或作業的口頭或書面評價。數學材料本身因其感情色彩較少,難以引起學生的直接興趣。如果數學教師能在教學語言、語速、語調和語氣上風趣一些,幽默一些,對學生的答問、作業的評價上恰當地賦予一點情感味,那么,學生在學習數學過程中可增添妙趣,樂學而不疲。
例如在本課教學中,在學生發現了三角形內角和特征時,我立即表揚,“你真能干,你是咱班第一個發現真理的數學家”;又如學生發現了另外一種證明三角形的方法時,我對他說,“你真聰明。”;在學生解題終于成功時,我又說:“祝賀你,成功了”等等,用以激發學生的求成心。另外在對待學生作業中有困難的同學,我總是用一些深情地惋惜語。如“真遺憾”、“差一點就對了”、“想得不錯,但說……”、“沒關系再說一次”、“下次肯定會更好”。……這些尊重、企盼、惋惜的用語對中差生來說,其作用不僅是情感上的補償而且是心理上的調整,可以使他們在學習數學的探索中,變無趣為有趣,變有趣為興趣,變興趣為樂趣。
科學家愛因斯坦說過:“熱愛是最好的老師。”作為一名數學教師,我們要在教學中根據不同的教學內容,不同的學生實際,靈活多變地采用多種做法,進一步激發學生學習興趣,使學生的思維活躍起來,使學生的腦子積極轉動起來,從而活躍課堂氣氛,提高課堂教學效果。
《三角形內角和》教學設計 篇5
我在講“認識三角形”時,“三角形內角和等于180度”這一結論學生早知曉,為什么三角形內角和會一樣?這也正是我本節課要與學生共同研究的問題。這時學生想說為什么又不知怎么說,又因不知道怎么說而感情特別激動。處于這種狀態的學生注意力特別集中,學習興趣異常高漲,到了一觸即發的地步。于是我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪、之后找到自己的驗證方法時,他們體驗了成功,也學會了學習。在這節課中我們共同找到了幾種驗證三角形內角和是180°方法。學生們拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發現的樂趣。有的學生將三角形的三個角都撕下來拼接到一起,有的同學將三角形的三個角沿著三角形的中位線折到一起……其中有一組同學竟然用稚嫩的聲音說:可以用數學方法來證明。于是他們闡述自己借助與三角形底邊平行的線與三角形所形成的內錯角進行證明的方法。至此學生完成了感性認識到理性認識的轉化過程,充分展示了數學地思維方式和思想方法。
《三角形內角和》教學設計 篇6
我在講“認識三角形”時,“三角形內角和等于180度”這一結論學生早知曉,為什么三角形內角和會一樣?這也正是我本節課要與學生共同研究的問題。這時學生想說為什么又不知怎么說,又因不知道怎么說而感情特別激動。處于這種狀態的學生注意力特別集中,學習興趣異常高漲,到了一觸即發的地步。于是我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪、之后找到自己的驗證方法時,他們體驗了成功,也學會了學習。在這節課中我們共同找到了幾種驗證三角形內角和是180°方法。學生們拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發現的樂趣。有的學生將三角形的三個角都撕下來拼接到一起,有的同學將三角形的三個角沿著三角形的中位線折到一起……其中有一組同學竟然用稚嫩的聲音說:可以用數學方法來證明。于是他們闡述自己借助與三角形底邊平行的線與三角形所形成的內錯角進行證明的方法。至此學生完成了感性認識到理性認識的轉化過程,充分展示了數學地思維方式和思想方法。