§5.3平行線的性質(一)
教學目標
1.使學生理解平行線的性質和判定的區別.
2.使學生掌握平行線的三個性質,并能運用它們作簡單的推理.
重點難點
重點:平行線的三個性質.
難點:平行線的三個性質和怎樣區分性質和判定.
關鍵:能結合圖形用符號語言表示平行線的三條性質.
教學過程
一、復習
1.如何用同位角、內錯角、同旁內角來判定兩條直線是否平行?
2.把它們已知和結論顛倒一下,可得到怎樣的語句?它們正確嗎?
二、新授
1.實驗觀察,發現平行線第一個性質
請學生畫出下圖進行實驗觀察.
設l1∥l2,l3與它們相交,請度量∠1和∠2的大小,你能發現什么關系?
請同學們再作出直線l4,再度量一下∠3和∠4的大小,你還能發現它們有什么關系?
平行線性質1(公理):兩直線平行,同位角相等.
2.演繹推理,發現平行線的其它性質
(1)已知:如圖,直線ab,cd被直線ef所截,ab∥cd.
求證:∠1= ∠2.
(2)已知:如圖2-64,直線ab,cd被直線ef所截,ab∥cd.
求證:∠1+∠2=180°.
在此基礎上指出:“平行線的性質2 (定理)”和“平行線的性質3 (定理)”.
3.平行線判定與性質的區別與聯系
投影:將判定與性質各三條全部打出.
(1)性質:根據兩條直線平行,去證角的相等或互補.
(2)判定:根據兩角相等或互補,去證兩條直線平行.
聯系是:它們的條件和結論是互逆的,性質與判定要證明的問題是不同的.
三、例題
例2如圖所示,ab∥cd,ac∥bd.找出圖中相等的角與互補的角.
此題一定要強調,哪兩條直線被哪一條直線所截.
答:相等的角為:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互補的角為:∠bac+∠acd=180°,∠abd+∠cdb=180°,∠cab+∠dba=180°,∠acd+∠bdc=180°.
相等的角還有:∠acd=∠abd,∠bac=∠bdc.(同角的補角相等)
例3如圖所示.已知:ad∥bc,∠aef=∠b,求證:ad∥ef.
分析:(執果索因)從圖直觀分析,欲證ad∥ef,只需∠a+∠aef=180°,
(由因求果)因為ad∥bc,所以∠a+∠b=180°,又∠b=∠aef,所以∠a+∠aef=180°成立.于是得證.
證明:因為 ad∥bc,(已知)
所以 ∠a+∠b=180°.(兩直線平行,同旁內角互補)
因為 ∠aef=∠b,(已知)
所以 ∠a+∠aef=180°,(等量代換)
所以 ad∥ef.(同旁內角互補,兩條直線平行)
四、練習:
1.如圖所示,已知:ae平分∠bac,ce平分∠acd,且ab∥cd.
求證:∠1+∠2=90°.
證明:因為 ab∥cd,
所以 ∠bac+∠acd=180°,
又因為 ae平分∠bac,ce平分∠acd,
所以 , ,
故 .
即 ∠1+∠2=90°.
(理由略)
2.如圖所示,已知:∠1=∠2,
求證:∠3+∠4=180°.
分析:(讓學生自己分析)
證明:(學生板書)
小結
我們是如何得到平行線的性質定理?通過度量,運用從特殊到一般的思維方式發現性質1(公理),然后由公理通過演繹證明得到后面兩個性質定理.從因果關系和所起的作用來看性質定理和判定定理的區別與聯系.
作業:
1.如圖,ab∥cd,∠1=102°,求∠2、∠3、∠4、∠5的度數,并說明根據?