生活中的平面圖形教學實錄
我們來看一看這張表:
在四邊形中,有1條對角線,2個三角形;五邊形中,有2條對角線,3個三角形,等等,現在我們要研究的問題就是:是不是對所有的多邊形都是這樣?還是只對部分多邊形才是這樣?一個多邊形,如果從一個頂點出發的對角線有 條,那么被分割成三角形的個數是不是一定比 多1個,也就是 個呢?怎么說明這一點呢?
[生]……
[生]一根棒頭,折一下,變成兩段;再折一下,又多出一段;以后每折一下就多出一段,所以這里也是一樣的。
[師]不折呢?
[生]1段。
[師]以后每次折一下,是不是只能折其中的某一段?能不能兩段同時折?
[生]不能。
[師]那么原來是一段,每折一次總數只能增加1,折了幾次就增加了幾段,所以被折成小棒頭的數目是不是總比折的次數要多1?
[生]是的!
[師]那么回到我們的多邊形中來,怎么解決?
[生]用刀切。
[師]對!沿著對角線用刀切。不切的時候有幾塊?
[生] 1塊。
[師]每切1刀?
[生]多出1塊。
[師]現在這個多邊形一共有幾條對角線?
[生] 條。
[師]也就是一共切了 刀是吧?是不是在原來1的基礎上增加了 塊?那么一共就有?
[生] 個三角形。
[師]也就是說:任何一個多邊形,從一個頂點出發的對角線有幾條,那么被分割成三角形的數目一定比它…
[生]多1個
[師]OK!鼓鼓掌!
[生](鼓掌)
[師]這位同學,從線的情況推廣到面的情況,從而解決了我們的問題,其想法非常巧妙!讓我們再次為他的聰明才智鼓掌!
[生](鼓掌)
[師]好!剛才我們解決了一個難題,證明了多邊形中,從一個頂點出發的對角線把這個多邊形分割成三角形的個數一定比對角線的條數要多1個。
[師]對于一個n邊形來說,它從一個頂點出發的對角線有多少我們并不知道。我們這里的 只是一個假設,從四邊形、五邊形和六邊形的情況來看,這個結論似乎是正確的。就是說:任意一個多邊形,從它的一個頂點發出的對角線的數目比它的邊數少3。
有沒有同學能夠再次來證明一下?
[生]……
[師]看一看,想一想。
[生]是的。
[師]哦?說說看?
[生]幾邊形么就有幾個頂點,它自己就已經有一個了,那么就少了一個;它旁邊還有兩條本來就是邊,這樣就又少了2條,一共少了3條。所以…(聲音輕下去了)
[師]是不是這樣?來來來,請你把剛才的話再說一遍好不好?有幾個同學沒聽明白。
[生]哦~嗚~~我說不來的。
[師]說不來的啊?剛才說得蠻好么!來!你膽子大一點好了,不要緊的!
[生]嗚~不要不要。
[師]好,那么我把剛才聽到的話再說一遍好不好?
[眾生]好。
[師]多邊形有幾條邊就有幾個頂點是不是?當我們選定其中一個頂點的時候,另外的頂點還有幾個?
[生](n-1)個。
[師]這樣我們把所有這些頂點和一開始選中的那個頂點連起來,是不是只有(n-1)條線段?這就比邊數少一個了是不是?
[生]是。
[師]但這些得到的線段是不是每一條都是對角線?
[生]不是。
[師]為什么?
[生]有兩條是邊。
[師]對!你看,和這個頂點最接近的兩個頂點,左邊一個,右邊一個,這兩點和原來的那個點連起來的這兩條線段都不是對角線,而是這個多邊形的邊,要不要去掉?
[生]要。
[師]這樣又少了2個,一共少了幾個啦?
[生]3個。
[師]現在剩下的是不是都是對角線?
[生]是的。
[師]也就是說對角線的數目一定比邊的數目要少3,對不對?
[生]對!
[師]來,給點掌聲鼓勵鼓勵!
[生](鼓掌)
[師]很好!
我們回顧一下剛才的學習內容:從生活中所熟悉的事物中抽象出幾何圖形,然后對這些圖形的某些性質進行了探討。在探索活動中,同學們充分發揮了自己的聰明才智,發現了很多非常重要的結論。如果我們把這些結論本身先放在一邊不說,就得到結論的整個過程而言,這個過程本身是不是也非常有意義?
[生]是!
[師]所以,同學們在今后的學習過程中一定要注意:除了學好我們書上的知識內容本身之外,更要注意學習方法,要學會學習,學會思考。
比如說,請看課本第23頁。
看到了吧?有一只貓(見原教材)。
[生]狐貍。
[師]嗯,更象狐貍。
不管它是貓還是狐貍,看到了沒有,整個圖案都是由什么圖形組成的?
[生]三角形。
[師]數數看,共有多少個三角形?怎么數?可以互相交流一下。
[生]12個。
[師]怎么數的?
[生]一個一個數。
[師]哦,一個一個地數。
那么如果三角形再多一點的話,你這樣一個一個地數是不是很容易數錯?比如說有的可能數漏了,還有的可能數重了?
[生]可能的。
[師]有沒有什么好的辦法,有規律地數,既不會漏數,也不會重數?
[生]把它們編上號。
[師]嗯,這辦法不錯!