相似三角形的性質(精選17篇)
相似三角形的性質 篇1
教學建議
知識結構
重點、難點分析
及應用是本節的重點也是難點.
它是本章的主要內容之一,是在學完相似三角形判斷的基礎上,進一步研究,以完成對相似三角形的定義、判定和性質的全面研究.還是研究相似多邊形性質的基礎,是今后研究圓中線段關系的工具.
它的難度較大,是因為前面所學的知識主要用來證明兩條線段相等,兩個角相等,兩條直線平行、垂直等.借助于圖形的直觀可以有助于找到全等三角形.但是到了相似形,主要是研究線段之間的比例關系,借助于圖形進行觀察比較困難,主要是借助于邏輯的體系進行分析、探求,難度較大.
教法建議
1.教師在知識的引入中可考慮從生活實例引入,例如照片的放大、模型的設計等等
2.教師在知識的引入中還可以考慮問題式引入,設計一個具體問題由學生參與解答
3.在知識的鞏固中要注意與全等三角形的對比
(第1課時)
一、教學目標
1.使學生進一步理解相似比的概念,掌握定理1.
2.學生掌握綜合運用相似三角形的判定定理和性質定理1來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理1的應用.
2.教學難點:是相似三角形的判定1與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
1.三角形中三種主要線段是什么?
2.到目前為止,我們學習了相似三角形的哪些性質?
3.什么叫相似比?
[講解新課]
根據相似三角形的定義,我們已經學習了相似三角形的對應角相等,對應邊成比例.
下面我們研究相似三角形的其他性質(見圖).
建議讓學生類比“全等三角形的對應高、對應中線、對應角平分線相等”來得出性質定理1.
性質定理1:相似三角形對應高的比,對應中線的比和對應角平分的比都等于相似比
∽ ,
,
教師啟發學生自己寫出“已知、求證”,然后教師分析證題思路,這里需要指出的是在尋找判定兩三角形相似所欠缺的條件時,是根據得到的,這種綜合運用相似三角形判定與性質的思維方法要向學生講清楚,而證明過程可由學生自己完成.
分析示意圖:結論→∽(欠缺條件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上兩種情況的證明可由學生完成.
[小結]
本節主要學習了性質定理1的證明,重點掌握綜合運用相似三角形的判定與性質的思維方法.
七、布置作業
教材P241中3、教材P247中A組3.
八、板書設計
相似三角形的性質 篇2
教學建議
知識結構
重點、難點分析
及應用是本節的重點也是難點.
它是本章的主要內容之一,是在學完相似三角形判斷的基礎上,進一步研究,以完成對相似三角形的定義、判定和性質的全面研究.還是研究相似多邊形性質的基礎,是今后研究圓中線段關系的工具.
它的難度較大,是因為前面所學的知識主要用來證明兩條線段相等,兩個角相等,兩條直線平行、垂直等.借助于圖形的直觀可以有助于找到全等三角形.但是到了相似形,主要是研究線段之間的比例關系,借助于圖形進行觀察比較困難,主要是借助于邏輯的體系進行分析、探求,難度較大.
教法建議
1.教師在知識的引入中可考慮從生活實例引入,例如照片的放大、模型的設計等等
2.教師在知識的引入中還可以考慮問題式引入,設計一個具體問題由學生參與解答
3.在知識的鞏固中要注意與全等三角形的對比
(第1課時)
一、教學目標
1.使學生進一步理解相似比的概念,掌握定理1.
2.學生掌握綜合運用相似三角形的判定定理和性質定理1來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理1的應用.
2.教學難點 :是相似三角形的判定1與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
1.三角形中三種主要線段是什么?
2.到目前為止,我們學習了相似三角形的哪些性質?
3.什么叫相似比?
[講解新課]
根據相似三角形的定義,我們已經學習了相似三角形的對應角相等,對應邊成比例.
下面我們研究相似三角形的其他性質(見圖).
建議讓學生類比“全等三角形的對應高、對應中線、對應角平分線相等”來得出性質定理1.
性質定理1:相似三角形對應高的比,對應中線的比和對應角平分的比都等于相似比
∽ ,
,
教師啟發學生自己寫出“已知、求證”,然后教師分析證題思路,這里需要指出的是在尋找判定兩三角形相似所欠缺的條件時,是根據得到的,這種綜合運用相似三角形判定與性質的思維方法要向學生講清楚,而證明過程可由學生自己完成.
分析示意圖:結論→∽(欠缺條件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上兩種情況的證明可由學生完成.
[小結]
本節主要學習了性質定理1的證明,重點掌握綜合運用相似三角形的判定與性質的思維方法.
七、布置作業
教材P241中3、教材P247中A組3.
八、板書設計
相似三角形的性質 篇3
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點 :是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇4
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點 :是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇5
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點:是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇6
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點:是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇7
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點 :是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇8
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點 :是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇9
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點 :是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇10
教學建議
知識結構
重點、難點分析
及應用是本節的重點也是難點.
它是本章的主要內容之一,是在學完相似三角形判斷的基礎上,進一步研究,以完成對相似三角形的定義、判定和性質的全面研究.還是研究相似多邊形性質的基礎,是今后研究圓中線段關系的工具.
它的難度較大,是因為前面所學的知識主要用來證明兩條線段相等,兩個角相等,兩條直線平行、垂直等.借助于圖形的直觀可以有助于找到全等三角形.但是到了相似形,主要是研究線段之間的比例關系,借助于圖形進行觀察比較困難,主要是借助于邏輯的體系進行分析、探求,難度較大.
教法建議
1.教師在知識的引入中可考慮從生活實例引入,例如照片的放大、模型的設計等等
2.教師在知識的引入中還可以考慮問題式引入,設計一個具體問題由學生參與解答
3.在知識的鞏固中要注意與全等三角形的對比
(第1課時)
一、教學目標
1.使學生進一步理解相似比的概念,掌握定理1.
2.學生掌握綜合運用相似三角形的判定定理和性質定理1來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理1的應用.
2.教學難點:是相似三角形的判定1與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
1.三角形中三種主要線段是什么?
2.到目前為止,我們學習了相似三角形的哪些性質?
3.什么叫相似比?
[講解新課]
根據相似三角形的定義,我們已經學習了相似三角形的對應角相等,對應邊成比例.
下面我們研究相似三角形的其他性質(見圖).
建議讓學生類比“全等三角形的對應高、對應中線、對應角平分線相等”來得出性質定理1.
性質定理1:相似三角形對應高的比,對應中線的比和對應角平分的比都等于相似比
∽ ,
,
教師啟發學生自己寫出“已知、求證”,然后教師分析證題思路,這里需要指出的是在尋找判定兩三角形相似所欠缺的條件時,是根據得到的,這種綜合運用相似三角形判定與性質的思維方法要向學生講清楚,而證明過程可由學生自己完成.
分析示意圖:結論→∽(欠缺條件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上兩種情況的證明可由學生完成.
[小結]
本節主要學習了性質定理1的證明,重點掌握綜合運用相似三角形的判定與性質的思維方法.
七、布置作業
教材P241中3、教材P247中A組3.
八、板書設計
相似三角形的性質 篇11
教學建議
知識結構
重點、難點分析
及應用是本節的重點也是難點.
它是本章的主要內容之一,是在學完相似三角形判斷的基礎上,進一步研究,以完成對相似三角形的定義、判定和性質的全面研究.還是研究相似多邊形性質的基礎,是今后研究圓中線段關系的工具.
它的難度較大,是因為前面所學的知識主要用來證明兩條線段相等,兩個角相等,兩條直線平行、垂直等.借助于圖形的直觀可以有助于找到全等三角形.但是到了相似形,主要是研究線段之間的比例關系,借助于圖形進行觀察比較困難,主要是借助于邏輯的體系進行分析、探求,難度較大.
教法建議
1.教師在知識的引入中可考慮從生活實例引入,例如照片的放大、模型的設計等等
2.教師在知識的引入中還可以考慮問題式引入,設計一個具體問題由學生參與解答
3.在知識的鞏固中要注意與全等三角形的對比
(第1課時)
一、教學目標
1.使學生進一步理解相似比的概念,掌握定理1.
2.學生掌握綜合運用相似三角形的判定定理和性質定理1來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理1的應用.
2.教學難點 :是相似三角形的判定1與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
1.三角形中三種主要線段是什么?
2.到目前為止,我們學習了相似三角形的哪些性質?
3.什么叫相似比?
[講解新課]
根據相似三角形的定義,我們已經學習了相似三角形的對應角相等,對應邊成比例.
下面我們研究相似三角形的其他性質(見圖).
建議讓學生類比“全等三角形的對應高、對應中線、對應角平分線相等”來得出性質定理1.
性質定理1:相似三角形對應高的比,對應中線的比和對應角平分的比都等于相似比
∽ ,
,
教師啟發學生自己寫出“已知、求證”,然后教師分析證題思路,這里需要指出的是在尋找判定兩三角形相似所欠缺的條件時,是根據得到的,這種綜合運用相似三角形判定與性質的思維方法要向學生講清楚,而證明過程可由學生自己完成.
分析示意圖:結論→∽(欠缺條件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上兩種情況的證明可由學生完成.
[小結]
本節主要學習了性質定理1的證明,重點掌握綜合運用相似三角形的判定與性質的思維方法.
七、布置作業
教材P241中3、教材P247中A組3.
八、板書設計
相似三角形的性質 篇12
教學建議
知識結構
重點、難點分析
及應用是本節的重點也是難點.
它是本章的主要內容之一,是在學完相似三角形判斷的基礎上,進一步研究,以完成對相似三角形的定義、判定和性質的全面研究.還是研究相似多邊形性質的基礎,是今后研究圓中線段關系的工具.
它的難度較大,是因為前面所學的知識主要用來證明兩條線段相等,兩個角相等,兩條直線平行、垂直等.借助于圖形的直觀可以有助于找到全等三角形.但是到了相似形,主要是研究線段之間的比例關系,借助于圖形進行觀察比較困難,主要是借助于邏輯的體系進行分析、探求,難度較大.
教法建議
1.教師在知識的引入中可考慮從生活實例引入,例如照片的放大、模型的設計等等
2.教師在知識的引入中還可以考慮問題式引入,設計一個具體問題由學生參與解答
3.在知識的鞏固中要注意與全等三角形的對比
(第1課時)
一、教學目標
1.使學生進一步理解相似比的概念,掌握定理1.
2.學生掌握綜合運用相似三角形的判定定理和性質定理1來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理1的應用.
2.教學難點 :是相似三角形的判定1與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
1.三角形中三種主要線段是什么?
2.到目前為止,我們學習了相似三角形的哪些性質?
3.什么叫相似比?
[講解新課]
根據相似三角形的定義,我們已經學習了相似三角形的對應角相等,對應邊成比例.
下面我們研究相似三角形的其他性質(見圖).
建議讓學生類比“全等三角形的對應高、對應中線、對應角平分線相等”來得出性質定理1.
性質定理1:相似三角形對應高的比,對應中線的比和對應角平分的比都等于相似比
∽ ,
,
教師啟發學生自己寫出“已知、求證”,然后教師分析證題思路,這里需要指出的是在尋找判定兩三角形相似所欠缺的條件時,是根據得到的,這種綜合運用相似三角形判定與性質的思維方法要向學生講清楚,而證明過程可由學生自己完成.
分析示意圖:結論→∽(欠缺條件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上兩種情況的證明可由學生完成.
[小結]
本節主要學習了性質定理1的證明,重點掌握綜合運用相似三角形的判定與性質的思維方法.
七、布置作業
教材P241中3、教材P247中A組3.
八、板書設計
相似三角形的性質 篇13
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點 :是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇14
各位老師:
今天我說課的課題是初中二年級幾何課中的“相似三角形的性質”一節,用的教材是人教版初中三。下面,我分五個部分來匯報我對這節課的教學設計,這就是“教材分析”、“教學方法與教學手段的選擇”、“學法指導”、“教學過程的設計”和“評價分析”。
一、教材分析
1、教材的地位及作用
“相似三角形的性質”是初中幾何第二冊“相似形”這章的重點內容之一,是在學完相似三角形的定義及判定的基礎上,進一步研究相似三角形的特性,以完成對相似三角形的全面研究。它是全等三角形性質的拓展,也是研究相似多邊形的基礎,這些性質是解決有關實際問題的重要工具。
2、教學目標
根據學生已有的認知基礎及本課教材的地位、作用,確定本課的教學目標為:
(1)知識目標:使學生掌握相似三角形的性質定理1及其證明方法,能運用相似三角形性質定理解決問題。
(2)能力目標:通過性質定理的推導,培養學生的邏輯推理能力和動手實踐能力。
(3)德育滲透:通過全等三角形和相似三角形的類比學習,樹立學生從特殊到一般的認識規律,通過先實驗后歸納再推理強化學生“實踐出真知”的求知意識。
3、教學重、難點
因為相似三角形的性質是解決與相似三角形有關問題的重要依據,也是研究相似多邊形性質的基礎,因此,本課的重點是:相似三角形的性質。
由于初二學生推理歸納的能力較低,所以本課的難點是:性質定理1的證明。
二、教學方法與教學手段的選擇
為了充分調動學生學習的積極性,使學生變被動學習為主動愉快的學習,使幾何課上得有趣、生動和高效,教學中從實驗入手,利用相似比為1的全等三角形的`性質,類比發現并歸納相似比不為1的相似三角形的性質定理1。在教學中,啟發、誘導貫穿于始終。
采用多媒體、投影儀等電教手段,增大教學容量和直觀性,提高教學效率和教學質量。
三、學法指導
為了培養學生的邏輯思維能力、自學能力和動手實踐能力,這節課采用自制學具、動手實驗,自已發現結論的學習方法。使學生通過本節課的學習,進一步理解觀察、類比、分析、歸納等數學方法。
四、教學程序
1、 揭示課題 指明方向
在由定義得出相似三角形具有“對應角相等。對應邊成比例”的性質后,開門見山指出本節課要進一步學習相似三角形的其它性質,使學生明確學習目的、避免盲目性。
2、 啟發誘導 探索新知
2.1 復習導課
在學生已學過相似三角形的定義、相似比等概念的基礎上,提問:
①什么叫相似比?
②當兩個相似三角形的相似比為1時,這兩個三角形有何特殊關系?
③全等三角形除了它們的對應角相等、對應邊相等外,三條主要線段:對應高、對應中線、對應角平分線有何關系?
這樣,既讓學生加深了相似三角形與全等三角形的區別與聯系,也自然而然地引出:那么相似比不為1的相似三角形的對應高、對應中線、對應角平分線又有哪些性質呢?
2.2 實驗 猜想證明
首先,引導學生依次完成以下的實驗步驟:分別作出兩對相似三角形對應邊上的高,用刻度尺量出所作出的對應高的長,并計算它們的比值,用所得的比值與相似三角形的對應邊的比相比較,發現有什么特殊關系?并將所得的結論用命題的形式表述出來。
然后,讓學生依次作出對應中線、對應角平分線,并且完成與以上相同的實驗步驟,最終讓學生猜想歸納出三個命題:
命題1:相似三角形對應高的比等于相似比。
命題2:相似三角形對應中線的比等于相似比。
命題3:相似三角形對應角平分線的比等于相似比。
接著,引導學生回答命題1的題設、結論,教師把命題1的圖示畫在黑板上,得到以下的數學表達式。
已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應高。
求證:AD/A/D/=K
首先讓學生回憶,證明線段成比例學過哪些方法,接著引導學生分析證明思路:要證AD/A/D/=K,根據圖形學生能找到含對應高和對應邊的兩對三角形,
即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應有△ADB∽△A/D/B/,由條件可知 ∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學生口述教師板書規范的證明過程。接著問學生還有哪些證明方法?同理可證得其他兩邊上的對應高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數學表達式和證明方法與命題1 類似,所以為了提高教學效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導學生課堂練習證明這兩個命題。
至此,本節課的關鍵內容已經出來了,教師指出上述三個命題歸納在一起作為相似三角形的一個性質定理。同時指出以上的性質定理也內含著對應高、對應中線、對應角平分線成比例這一結論。
3、鞏固反饋練習
為了反饋學生掌握所學知識的程度,我由淺入深設計了一組題:
1、(口答填空):已知:兩個相似三角形一對對應中線長分別是2cm和5cm,那么它們的相似比是 ;對應高的比是 ;如果一對對應角平分線中,較短的為3cm,則較長的為 。
2、已知:一塊三角形地塊的一邊長為120m,在地圖上量得和它對應的邊及這邊上的高分別是0.03m和0.02m,求這塊地的實際面積。
3、教科書P242練習3。
相似三角形的性質 篇15
教學建議
知識結構
重點、難點分析
相似三角形的性質及應用是本節的重點也是難點.
它是本章的主要內容之一,是在學完相似三角形判斷的基礎上,進一步研究相似三角形的性質,以完成對相似三角形的定義、判定和性質的全面研究.相似三角形的性質還是研究相似多邊形性質的基礎,是今后研究圓中線段關系的工具.
它的難度較大,是因為前面所學的知識主要用來證明兩條線段相等,兩個角相等,兩條直線平行、垂直等.借助于圖形的直觀可以有助于找到全等三角形.但是到了相似形,主要是研究線段之間的比例關系,借助于圖形進行觀察比較困難,主要是借助于邏輯的體系進行分析、探求,難度較大.
教法建議
1.教師在知識的引入中可考慮從生活實例引入,例如照片的放大、模型的設計等等
2.教師在知識的引入中還可以考慮問題式引入,設計一個具體問題由學生參與解答
3.在知識的鞏固中要注意與全等三角形的對比
(第1課時)
一、教學目標
1.使學生進一步理解相似比的概念,掌握相似三角形的性質定理1.
2.學生掌握綜合運用相似三角形的判定定理和性質定理1來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理1的應用.
2.教學難點 :是相似三角形的判定1與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
1.三角形中三種主要線段是什么?
2.到目前為止,我們學習了相似三角形的哪些性質?
3.什么叫相似比?
[講解新課]
根據相似三角形的定義,我們已經學習了相似三角形的對應角相等,對應邊成比例.
下面我們研究相似三角形的其他性質(見圖).
建議讓學生類比“全等三角形的對應高、對應中線、對應角平分線相等”來得出性質定理1.
性質定理1:相似三角形對應高的比,對應中線的比和對應角平分的比都等于相似比
∽ ,
,
教師啟發學生自己寫出“已知、求證”,然后教師分析證題思路,這里需要指出的是在尋找判定兩三角形相似所欠缺的條件時,是根據相似三角形的性質得到的,這種綜合運用相似三角形判定與性質的思維方法要向學生講清楚,而證明過程可由學生自己完成.
分析示意圖:結論→∽(欠缺條件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上兩種情況的證明可由學生完成.
[小結]
本節主要學習了性質定理1的證明,重點掌握綜合運用相似三角形的判定與性質的思維方法.
七、布置作業
教材P241中3、教材P247中A組3.
八、板書設計
相似三角形的性質 篇16
(第2課時)
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點 :是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
∽ ,
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
∽ ,
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是 ,它們的面積之經不一定是 ,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1 已知如圖, ∽ ,它們的周長分別是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此題學生一般不會感到有困難.
例2 有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為 ,地塊在甲圖上為 ,在乙圖上為 .
∽ ∽ 且 , .
.
學生在運用掌握了計算時,容易出現 的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如: ,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
相似三角形的性質 篇17
各位領導老師:
大家好!今天我說課的課題是華師版初中三年級數學 “相似三角形的性質”。
下面,我分以下幾個部分來匯報我對這節課的教學設計,“教材分析”、“ 學生的認知起點分析”“教學目標、教學重點和難點”“學法指導”、“教學過程的設計”和“評價分析”加以說明。
一、教材分析。
教材的地位及作用:對于相似三角形的研究,實際上是對平面幾何中兩個封閉圖形關系研究的進一步,相似三角形的性質”是初中數學“相似形”中的重點內容之一,是在學完相似三角形的定義及判定的基礎上,進一步研究相似三角形的特性,以完成對相似三角形的全面研究。它是全等三角形性質的拓展,這些性質是解決有關實際問題的重要依據,因此必須熟練掌握三角形相似的性質,學會靈活運用相似三角形的性質,在學習數學中起著承上啟下的作用。
二、學生的認知起點分析:
學生通過前面的學習已了解了三角形相似的概念,掌握了相似三角形判定的這為探究三角形相似的性質,做好了知識上的準備。另外,學生也具備了識別三角形全等的知識,通過類比,使學生能主動參與本節課的操作、探究。
三、教學目標:
根據學生已有的認知基礎及本課教材的地位、作用,確定本課的教學目標為:
(1)知識目標:使學生掌握相似三角形的性質定理及其證明方法,能運用相似三角形性質定理解決問題。
(2)能力目標:通過性質定理的推導,培養學生的邏輯推理能力和動手實踐能力。
(3)德育目標:通過全等三角形和相似三角形的類比學習,樹立學生從特殊到一般的認識規律,通過先實驗后歸納再推理強化學生“實踐出真知”的求知意識。
四、教學重、難點:
因為相似三角形的性質是解決與相似三角形有關問題的重要依據,也是研究相似多邊形性質的基礎,根據教學目標我設置了本節的
1、重點:相似三角形的性質及其應用。
2、難點:相似三角形性質的探索過程。
五、教學方法與教學手段的選擇。
為了充分調動學生學習的積極性,使學生變被動學習為主動愉快的學習,使課堂教學生動、有趣、高效,本節課我將采用自主探索、啟發引導、合作交流、反饋測試展開教學,并采用計算機輔助課堂教學,激勵學生積極參與、觀察、發現其知識的內在聯系,使每個學生都能積極思維,這樣一方面可以激發學生學習的興趣,提高學生學習的效率,另一方面拓展學生的思維空間,培養學生用創造性思維去學習體會。
六、學法指導。
在學法指導上,充分引導學生積極思維,鼓勵學生進行合作學習,讓每個學生都動口、動手、動腦,體會數學內容之間的聯系,在解決問題的過程中,深化對其本質屬性的理解,培養學生學習的主動性和積極性,讓學生在愉悅的氣氛中感受到數學學習的無窮樂趣。
七、設計思想。
在本節課設計中,從分發揮了教師的主導作用,適時點撥、引導,盡可能調動所有學生的積極性,主動參與到合作探究討論中來,使學生在與他人的合作交流中,獲取新知,并是個性思維得到發展。
在本節的學習中,采用探究的形式,引導學生通過操作、觀察、探索、交流、發現,得出相似三角形對應角相等,對應邊成比例外 ,對應邊上的高線、對應邊上的中線、對應邊上的角平分線也是成比例的,都等于相似比,通過進一步探討還得出相似三角形周長的比等于相似比,面積的比等于相似比的平方,同時對得到的知識加以運用,配備了鞏固練習,讓學生做到活學活用,并適時與學生溝通,營造親切、和諧、活躍的課堂氣氛,以激發學生積極思維,促進認知發展。
八、教學程序。
1、 明確目標,重點、難點,為學生指明方向避免盲目性。
2、知識鏈接 目的在于引導學生用類比思想學習新知。
3、 啟發誘導 探索新知 培養學生自主學習與合作學習。
4、鞏固練習 檢驗學生對所學知知識掌握情況。
5、歸納小結 知識的再現 梳理知識。
6、作業布置:進一步鞏固所學知識。
九、評價分析。
今天這節課主要是對數學學科“學案導學”這種新知教學模式進行一次嘗試,也是對從細節入手,打造優質高效數學課堂的主題進行了一次探索,通過這節課的教學,我的收獲也很多,這為我們以后的課堂教學積累經驗。我認為這節課比較理想的方面有:
1、教學方法和教學手段的選擇比較恰當合理。
選擇恰當的教學手法和教學手段是高效課堂的重要保障,在探究上主要是采用合作交流的形式,因為學生提前有預習,也是檢驗學生預習的情況,把預習情況在小組匯報,充分調動學生的積極性,使學生變被動為主動學習,使課堂教學生動、有趣、高效。在交流中達成共識。然后以小組匯報形式展示,檢驗學生對一個探究問題的掌握情況,收到良好效果。探究二以個人展示為主。
分別找不同層次的學生敘述證明過程,探究一作為基礎,所以探究二的推理過程就很容易;探究三采用的方法是先自主思考,然后再小組中研討,學生板演的形式來完成。因為探究三學生在自主思考中,我通過學生的反應和表情發現一部分學生有障礙,所以我及時安排了這次探究。三個探究題采用了不同的方法和形式,體現了探究方法的多元化,同時采用計算機輔助教學,激勵學生積極參與、觀察。發現只是的內在聯系,使每個學生都能積極思維,激發學生學習興趣,提高學生的學習效率,拓展學生思維空間,培養學生用創造性思維去學習。
2、教學目標基本得到落實。
一節課的中心工作就是要落實好教學目標,課前的準備和課堂的各個環節都是為落實目標來服務的,通過本節的教學可以看出學生對相似三角形對應高的比,對應中線的比,對應角平分線的比。周長的比等于相似比,面積的比等于相似比平方,這幾條性質掌握比較好,在探索這幾條性質的過程中,學生經歷觀察、猜想、驗證的過程,感到了新知的產生過程,這為掌握新知奠定了基礎,通過鞏固訓練,也可以反應學生對本節課所學知識基本掌握。
3、抓住重點,突破難點。
本節課的重點是相似三角形的性質及其應用,在課堂上緊緊抓住重點層層展開教學,通過觀察猜想,測量驗證和推理論證得出相似三角形的性質,符合學生的認知規律讓所有學生都動起來,參與進來。差生不再是旁觀者。使學生能積極主動去探索新知和獲取新知。通過復習中的'第一個和第四個,學生就有了思想準備。本節課研究的問題與全等三角形的性質類似。全等與相似明顯區別就是全等對應邊相等,相似對應成比例,學生在探究的幾個問題上就類比全等的性質去研究,降低了問題的難度,進而突破難點。
4、分層教學,體現比較明顯。
分層教學時我校的一個教學特色,學生兩極分化嚴重,既得讓尖子生吃得飽,又得讓差生吃得好,所以我把班級學生分成6個小組,每個小組由一名組長,組長為1號,其他成員是按數學成績的高低編號2——7號,本節課的復習幾個問題是各組的5,6,7號同學展示,這是以前所學的基礎知識,是他們應該掌握的內容,通過展示,基本掌握探究1是各組代表展示,探究2是各組3、4號同學展示,探究3是各組的2號同學展示。習題最后一題是1號同學展示,在研究過程中,組長組織一一匯報自己的想法,小組中評價達成共識。作業設置有必做題、選做題、備選題也是針對不同層次的學生來設置的,也充分體現了新的課程標準人人獲得不同的提高。
5、合作學習效果明顯。
學生在合作學習中表現非常優秀,討論氣氛濃厚,每個個體都積極主動參與進來,在小組中展示自己想法,個別小組的研究還有一定的深度和廣度,通過展示可以發現研討具有實效性。
6、學生活動比較好。
我覺得在這節課當中,學生參與活動的人數比較多,活動的次數比較多,比如舉手回答問題比較積極,本節課安排了3次典型的學生活動,小組活動參與意識比較強烈。
在整個教學過程中,教師主要是發揮了主導作用,適時點撥、引導,把時間交給了學生,大膽放手讓學生去做,盡可能調動學生的積極性,讓學生主動參與到合作探究中來,使學生在與他人合作交流中獲得新知,個性思維得到發展。時時與學生溝通,營造親切、和諧、活躍的課堂氣氛,激發學生積極思維,促進認知發展。
我認為本節課的不足之處:
1、在每個探究結束后,只是口頭總結,應該做幾張幻燈片,顯示在大屏幕上,這樣效果會更好。
2、通過課堂實踐,我認為學生小組人員過多,不宜全面交流,會影響學習效果。
3、課堂上有幾個生成問題。第一個是在證明相似三角形比等于相似比平方時,我隨機留了一名同學講解,講得很好,第二個是沒想到在練習3題中,學生能提出各種解法。第5題上沒想到有同學提出了另一種解法,這樣就沖擊了我后面的小結中預設時間,本來想找幾個同學說,我還有個總結,后面時間有點緊。
4、由于緊張原因,在放映幻燈片中有幾處錯誤,如講完性質時總結,本來應由學生總結,但我一放時都放了出來。