八年級數學課堂教案范文(精選2篇)
八年級數學課堂教案范文 篇1
一、學習目標
1.使學生了解運用公式法分解因式的意義;
2.使學生掌握用平方差公式分解因式
二、重點難點
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學習方法:歸納、概括、總結。
三、合作學習
創設問題情境,引入新課
在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。
1.請看乘法公式
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如X2—16
=(X)2—42
=(X+4)(X—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
(1)25—16X2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2X3—8X。
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習
教科書練習。
六、作業
1、教科書習題。
2、分解因式:X4—16X3—4X4X2—(y—z)2。
3、若X2—y2=30,X—y=—5求X+y。
八年級數學課堂教案范文 篇2
教學目標:
1、在現實情境中,了解全等形的概念及全等三角形的概念及其性質
2、在具體情境中,會使用全等符號“≌”標注兩個全等三角形
3、會找出兩個全等三角形的對應邊和對應角
教學重點:全等三角形的概念及性質
教學難點:找全等三角形對應邊和對應角
教學用具:幻燈、全等三角形、剪刀、學具袋
教學過程:
(一)、教學導入
1、問題:在平面內,我們學過哪幾種圖形的變換?共同的性質是什么?今天我們在它的基礎上學習新的內容。
(二)、新授
1、全等形及全等三角形的概念。
A、(幻燈)引出完全重合。
問題:同學們,你能舉出生活中完全重合的兩個圖形的.例子嗎?
讓學生討論,交流結果,充分肯定學生的思考與發現,教師可列舉一些例子。
B、教師歸納
(1)、全等形:能夠完全重合的圖形。
(2)、全等三角形:能夠完全重合的兩個三角形。
2、會使用全等符號“≌”標注兩個全等三角形和找兩全等三角形的對應邊和對應角。
A、學生活動:每位同學用剪刀把準備好的全等三角形剪下來,意見和建議
進一步加深概念的理解。
B、教師活動:將剪好的兩個全等三角形貼在黑板上,標上頂點字母。
引出:(1)、△ABC全等于△A′B ′C ′,全等于用“≌”表示,讀作“全等于”,記作:△ABC△≌△A′B ′C ′。
(2)、對應頂點:互相重合的頂點。
對應邊:互相重合的邊。
對應角:互相重合的角。
學生試結合圖,在ABC△≌△A′B ′C ′中找出對應頂點、對應邊和對應角。
C、師生活動:將疊合的兩個三角形其中一塊沿任意直線作軸反射,擺出這兩個全等三角形不同位置的組合圖形,并指出對應元素。
D、(幻燈2)出示習題,學生在練習本上完成,做完后與同學交流,教師查巡學生練習的情況,最后師生歸納找對應角,找對應邊的方法。
E、(幻燈3)歸納找對應角、找對應邊的方法。
3、全等三角形的性質
A、在各種不同的變換下得到圖形中,引導學生發現兩個全等三角形的位置發生了變化,但他們的對應邊、對應角不變,得出下面兩條性質:
性質1:全等三角形對應邊相等
性質2:全等三角形對應角相等
B、(幻燈4)找出全等三角形中相等的邊與相等的角。
三、鞏固練習
教材第71頁“練習”
四、總結歸納
1、全等形及全等三角形的基本概念
2、會找全等三角形的對應邊與對應角
3、全等三角形的性質